
State of
API Exposure 2024
Fortune 1000 at Risk: How we discovered 30,000
exposed APIs & 100,000 API issues in the world’s largest
organizations

3,945
Development APIs exposed

30,784
We analyzed the domains of the world’s largest organizations

included in the Fortune 1000 and CAC 40.
Here’s what we found

secrets accessible in API services

1,816

Highly critical vulnerabilities

2,038

Exposed APIs

Key Takeaways

The State of API Exposure 2024 report provides an in-depth analysis of the significant
risks associated with exposed APIs, highlighting vulnerabilities across large
organizations, including Fortune 1000 companies and CAC 40 entities. Key findings
reveal the pervasive nature of API security issues and the need for improved security
measures:

1,834 Highly Critical Vulnerabilities in Fortune 1000 Companies: Among the
identified vulnerabilities, 1834 were classified as highly critical, directly affecting
Fortune 1000 companies. These critical vulnerabilities, often associated with broken
authentication and configuration errors, place essential systems and sensitive data at
significant risk of exposure and exploitation. Critical issues span various sectors,
impacting tech platforms, financial companies, insurance, healthcare, tech, and others.

Development APIs: Nearly 4,000 development APIs were publicly accessible, often
lacking adequate security controls. Exposing these APIs can inadvertently reveal
sensitive information and offer attackers potential entry points.

Exposed Secrets: The report found 1,816 highly sensitive secrets exposed within API
environments, including access tokens, API keys, and authentication credentials.
These exposed secrets significantly heighten the risk of unauthorized access and
potential misuse of critical systems.

Call to action: We recommend to start auditing all APIs—particularly shadow and
legacy APIs—to identify and secure vulnerabilities, and restricting access to
development APIs with production-level security standards. Implementing continuous
monitoring and scanning tools is crucial to detect risks early, while ensuring that all
secrets are encrypted and securely managed to prevent exposure.

"Scaling API security is a fundamental challenge. As organizations
deploy more APIs to meet digital demands, their security
processes are falling behind. Our research shows that a majority
of APIs are left unmanaged, which not only exposes data, but also
magnifies risk at every level of operation."

Tristan Kalos, CEO of Escape

DANGERS OF UNSECURED
EXPOSED APIS

5

METHODOLOGY
7

OUR FINDINGS
12

FORTUNE 1000 AT RISK
17

ESSENTIAL REMEDIATION STEPS

22

Contents

CONCLUSION
24

CVES FOUND
20

EXPOSED AND VULNERABLE
DEVELOPMENT APIS

16

AMERICAN MULTINATIONAL TECH
COMPANY: EXPOSED SPRING BOOT
ACTUATOR

18

THE CONSEQUENCES OF UNSECURED
APIS EXPOSED IN THE WILD
API sprawl has emerged as a significant
challenge in recent years. As organizations
increasingly rely on APIs to fuel digital
transformation, connect services, and
deliver data-driven experiences, the sheer
number of APIs in production has
skyrocketed.

As we move through 2024, the exponential
growth of APIs presents new challenges.
According to recent Gartner’s market
guide, APIs - especially shadow and
dormant ones - are causing data breaches
among organizations that, on average,
exceed the magnitude of other breaches.

Since 2022, at least 190M sensitive data
records have been breached. In our
previous research, we estimate that
enterprise companies lost $31B due to
breaches.

Many APIs are pushed to production too
soon, often bypassing critical security
testing stages or, in some cases, being
tested only after deployment rather than
within development environments.

This rush to release frequently leads to gaps
in security coverage, allowing untested or
under-tested endpoints to expose sensitive
information or become vulnerable to attack.

Another significant factor is the proliferation
of "shadow APIs"—APIs that exist outside
the knowledge or management of security
teams. These undocumented, unmanaged,
or abandoned APIs often lack essential
security protocols, making them especially
prone to exploitation. Shadow APIs can
emerge from development shortcuts, legacy
applications, or third-party integrations that
slip through regular security oversight,
creating hidden risks within the system’s
architecture.

Given these trends, API security deserves
greater attention. It is now widely recognized
as a critical challenge requiring stringent
security management and thorough testing
before APIs are released into production
environments. By analyzing Fortune 1000
and CAC 40 exposed API services we’re here
to prove it.

ARE WE IGNORING HIDDEN DANGERS?

57%
of organizations suffered an

API-related data breach in the
past two years**

*according to a 2023 report from Enterprise Management Associates (EMA)

10%
 of IT organizations fully

document their APIs*

**according to the 2025 Global State of API Security report

$31B
estimated losses due to

API breaches***

***according to Escape’s API Threat Landscape Report

https://escape.tech/resources/gartner-market-guide-for-api-protection?ref=escape.tech
https://escape.tech/resources/gartner-market-guide-for-api-protection?ref=escape.tech
https://escape.tech/blog/introducing-the-api-threat-landscape/
https://escape.tech/blog/introducing-the-api-threat-landscape/
https://escape.tech/blog/introducing-the-api-threat-landscape/
https://escape.tech/blog/introducing-the-api-threat-landscape/

A vulnerability in Trello’s API configuration
led to a massive data leak in January 2024,

where over 15 million user records were
exposed on a dark web forum. Trello, a

popular project management platform, had
an API endpoint that inadvertently allowed

open access to sensitive user data, including
project details, personal information, and
task management records. Hackers were

able to scrape this data due to
misconfigurations in Trello’s API permissions,

underscoring how quickly API flaws can
result in serious data leaks.

In July 2024, Twilio’s Authy service suffered a
significant breach due to an exposed API

endpoint. This vulnerability allowed
unauthorized access to authentication data,

putting millions of users at risk. The attackers
managed to exploit this unsecured endpoint
to access one-time passcodes, which are a

critical layer of security for multi-factor
authentication. This breach highlighted how

even security-focused companies are
vulnerable when API endpoints aren’t

adequately protected.

In July 2024, German security expert Lilith
Wittmann discovered an unprotected API

from Deutsche Telekom, that could be used,
to retrieve details about landline connections

via their internet access. While the exact
number of affected users was not disclosed,

it exposed sensitive user data such as names,
email addresses, and service usage details.

The open API lacked adequate access
controls, allowing unauthorized parties to

access this information. This incident
highlights the critical need for robust API

governance to prevent data exposure and
protect customer privacy.

2024'S CASES OF VULNERABLE
APIS EXPOSED IN THE WILD

In May 2024, Dell experienced a significant
data breach when a threat actor exploited an
unsecured API endpoint on a partner portal.
This vulnerability allowed unauthorized
access to approximately 49 million customer
records, including names, physical
addresses, and order information. The
breach highlighted the risks associated with
insufficient API security measures and the
potential for large-scale data exposure.

IN 2024, DEUTSCHE TELEKOM

REPORTED APPROXIMATELY 259M

MOBILE CUSTOMERS WORLDWIDE

https://www.bleepingcomputer.com/news/security/trello-api-abused-to-link-email-addresses-to-15-million-accounts/
https://www.bleepingcomputer.com/news/security/trello-api-abused-to-link-email-addresses-to-15-million-accounts/
https://www.cpomagazine.com/cyber-security/twilio-data-breach-that-exposed-33-million-authy-phone-numbers-caused-by-unsecured-api-endpoint/
https://www.cpomagazine.com/cyber-security/twilio-data-breach-that-exposed-33-million-authy-phone-numbers-caused-by-unsecured-api-endpoint/
https://borncity.com/win/2024/07/15/an-open-api-at-deutsche-telekom-is-leaking-user-data/
https://borncity.com/win/2024/07/15/an-open-api-at-deutsche-telekom-is-leaking-user-data/
https://proxy.parisjc.edu:8293/statistics/1154245/deutsche-telekom-mobile-customers-quarterly/

In our comprehensive analysis, we aimed to examine API security measures across a broad
spectrum of domains. We selected domains from two primary sources:

Fortune 1000: A list of the 1000 largest public companies in the United States, ranked by
revenue. We excluded several very large tech companies like Amazon, Google, and Meta
to avoid skewing the results.
CAC 40: A capitalization-weighted index of the 40 most significant stocks among the top
100 companies by market cap on Euronext Paris.

While this approach provided a substantial data set, we recognize potential biases. Larger
domains with extensive resources may employ stronger security measures, potentially
leading to fewer vulnerable APIs. However, our study focused on the largest American
companies without specifically accounting for this bias.

Alternatively, with over 365 million domain names reported across the internet, our sample
size becomes relatively small, potentially leading to greater volatility in the number of
findings.

Methodology
Data Gathering Strategy

The data collection was a one-time process.
During the collection, we encountered several
limitations. To respect legal and ethical
boundaries, we deliberately excluded certain
types of domains. This included governmental,
educational, and health-related domains, as
regular users are not typically authorized to
explore these. This decision ensured that our
study aligned with ethical norms for web crawling
and data collection practices, prioritizing
responsible research standards.

https://www.someka.net/products/fortune-1000-list-excel-template/
https://www.boursorama.com/bourse/actions/palmares/france/?france_filter%5Bmarket%5D=1rPCAC&france_filter%5Bvariation%5D=50001&france_filter%5Bperiod%5D=1&france_filter%5BindexTrading%5D=1rPCAC
https://thewebsiteflip.com/domains/how-many-total/

After finalizing our domain list, we gradually added
these domains into Escape’s platform to initiate a
comprehensive scan of exposed APIs. We examined
not only the primary domains but also dived into the
numerous subdomains associated with each. This
approach enabled us to achieve a thorough and
granular discovery process.

In-Depth API Discovery Process

Escape uses a sophisticated combination of techniques to identify and inventory APIs by
scanning exposed source code:

Subdomain enumeration
Escape begins by performing subdomain enumeration. This process involves scanning for all
subdomains associated with the main domain you previously entered into the platform.
Subdomains often host APIs or services that may not be immediately apparent. By identifying
these subdomains, Escape can uncover additional endpoints that might otherwise be missed.
This initial step lays the foundation for a comprehensive discovery process.

AI-powered fingerprinting
Once subdomains are identified, Escape employs AI-powered fingerprinting to recognize and
classify the APIs. Fingerprinting involves analyzing various characteristics of the APIs, such
as their structure, endpoints, and response patterns. The AI algorithms used by Escape can
detect and categorize different API types (REST, GraphQL, gRPC) with high accuracy. This
machine learning-based approach ensures that APIs are identified and classified correctly,
even if they have unique or non-standard configurations.

OSINT techniques
Escape also leverages Open Source Intelligence (OSINT) techniques. OSINT involves
gathering and analyzing publicly available information to enhance the discovery process. By
examining code repositories, documentation, and other public resources, Escape can identify
additional API endpoints and services. This technique helps in discovering APIs that are not
directly exposed but can still be found through public information.

Through this multi-layered process, we discovered 158,079 subdomains, allowing for
extensive coverage and a highly detailed analysis. This broad scope provided a deep view
into the exposure and security practices around APIs across various industries, offering
critical insights into the current landscape of API security and vulnerability.

Methodology

∼1K
unique top-level domains

analyzed

Alexandra Charikova
∼

Methodology
Automated API Specification Generation

One of the most challenging aspects of our study was ensuring we had API specifications to
effectively scan newly discovered exposed API services for vulnerabilities.

Having an OpenAPI Specification (OAS) is particularly beneficial as it provides a
standardized, machine-readable format for documenting RESTful APIs, promoting clarity and
consistency across services.

Through our initial scan, we located 4,547 exposed API specifications, so we had to generate
most of the specifications ourselves. This process involved parsing the Abstract Syntax Tree
(AST) from the code to create dynamically detailed and accurate API specifications.

Luckily, Large Language Models (LLMs) have recently become extremely good at analyzing
and generating code. Moreover, they show great performance across a wide variety of code
languages, frameworks, and coding styles, which is exactly what we want for framework and
language-agnostic OAS generation software. Finally, LLMs can also leverage information in
code comments, which the traditional static analysis approach cannot do.

In our current approach, integrated into Escape’s platform, we focused on two key areas:
Semantic Analysis: We identify essential code fragments using custom rules (e.g.,
specific Semgrep patterns), optimizing the data sent to the LLM and enhancing prompt
quality.
Specification Generation: The LLM processes each identified fragment to generate
precise OAS methods, with contextualization ensuring accuracy by resolving
dependencies and references within the code.

This method enables Escape to not only generate API documentation but also to
continuously monitor and detect any changes or versions in the API documentation over
time.

4.5K
API specifications
found in the wild

29.7K
API specifications

programmatically generated

https://arxiv.org/html/2310.12357v2?ref=escape.tech
https://arxiv.org/html/2310.12357v2?ref=escape.tech

Methodology
Final step - API Security Scanning

After the comprehensive specification generation process, the final step is API security
scanning. Using Escape’s Dynamic Application Security Testing (DAST) solution, we conducted
in-depth analysis of each identified API endpoint to detect potential vulnerabilities and risks.

Escape’s DAST approach is specifically designed for API security. Unlike traditional web
application DAST tools, which are often limited in scope and primarily test web applications at
the surface level, Escape’s DAST is purpose-built to handle the unique requirements and
complexities of APIs. This makes it exceptionally effective at identifying security flaws in API
configurations, authentication, authorization, and more.

At the core of Escape's DAST is a proprietary algorithm that combines static and dynamic
analysis to deliver precise, high-confidence results. The algorithm operates in multiple stages:

Contextual Analysis: The algorithm first conducts a contextual analysis of each endpoint,
identifying the API’s structure, parameters, and dependencies. This allows it to adapt its
scanning approach to each specific API, ensuring relevance and reducing false positives.

1.

Fuzzing and Payload Injection: In the next stage, the algorithm uses fuzzing techniques to
test each endpoint by sending random, unexpected, or malformed inputs. This helps
identify weaknesses like input validation flaws, injection vulnerabilities, and
misconfigurations. The algorithm adapts these payloads based on real-time feedback,
simulating complex attacks more effectively than conventional static methods.

2.

Behavioral Monitoring: As it interacts with each endpoint, the algorithm monitors response
patterns and behaviors to detect anomalies. By observing responses over multiple
interactions, it can identify issues such as data exposure, error leakage, and misconfigured
permissions, providing insights into the API’s security posture.

3.

Risk Prioritization: Escape’s DAST concludes with an analysis that ranks detected
vulnerabilities based on risk and classifies them based on the metric named Escape
severity.

4.

You can find an in-depth technical explanation of the algorithm here.

30,784
API services scanned

for vulnerabilities

https://escape.tech/blog/latest-product-updates/#new-way-to-prioritize-issues-focusing-on-escape-severity
https://escape.tech/blog/latest-product-updates/#new-way-to-prioritize-issues-focusing-on-escape-severity
https://escape.tech/blog/escape-proprietary-algorithm/
https://escape.tech/blog/escape-proprietary-algorithm/

Methodology
Final step - API Security Scanning

The complete event-based architecture of the Escape Security Scanner, with the
reinforcement loop in the center

Findings - API Exposure

30,784
API services exposed

3,945
development APIs exposed,

including 6 organizations with more than
100 development APIs exposed per domain

- 5 from Fortune 1000 and 1 from CAC40

1,189
maximum exposed APIs per one domain

Findings - API Exposure

3,001

REST APIs

91%
APIs exposed, including

more than 166 exposed staging APIs
by one Fortune 1000 organization

0-10 11-50 51-100 101-200 200+
0,000

50,000

100,000

150,000

200,000

250,000

300,000

227,000
259,000

156,000 156,000

230,000

Number of Domains Exposing a Given
Range of API Services

AWS
51.1%

AZURE
16%

CLOUDFLARE
10.7%

AKAMAI
8.2%

GCP
7.5%

FASTLY
4.9%

IBM
0.6%

Most Common Cloud Providers
Among Exposed API Services

28.5K
among Fortune 1000

8.1K
API vulnerabilities found

among CAC40 organizations,
including 240 highly critical

Findings - API Security

107,368
Total vulnerabilities found

2,038
Highly critical

Distribution of highly critical vulnerabilities

98.8K
vulnerabilities found among Fortune 1000

organizations (large tech orgs. like Amazon,
Google or Meta excluded)

1.8K
highly critical

713
high risk CVEs found

11
API services vulnerable to

SQL injection

10
API services vulnerable to

BOLA

API8:2023 API2:2023 API9:2023 API7:2023 API1:2023
0

200

400

600

800

746

381

30 32 10

Alignment of high-risk Fortune 1000 vulnerabilities
with OWASP Top 10 2023 classification

Findings

42
domains are above the

average

468
average vulnerabilities per

domain

the biggest number of medium-risk vulnerabilities per
exposed domain

(an insurance company based in the US)

1,869

Industries with the highest number of high-risk
vulnerabilities

Insurance Technology

Healthcare

Automotive

Retail

Financial Services

Real Estate

Manufacturing

Aerospace…

the biggest number of high-risk vulnerabilities per
exposed domain

(same insurance company...)

205

Findings - API Secrets

Total secrets found

29
Highly critical

AWS Acc
es

s T
ok

en

Bea
rer

 To
ke

n

Gen
eri

c A
PI K

ey
s

geo
co

dio

Gith
ub

 App To
ke

n

Gith
ub

 OAuth

grap
hc

ms

ha
sh

ico
rp_tf

_p
as

sw
ord jdbc

Jir
a T

ok
en JW

T
md5

Pas
sw

ord

Pho
ne

 nu
mber

Plai
d Sec

ret
 Key

SSH URL

Yo
uT

ub
e a

pike
y

0,000

10,000

20,000

30,000

40,000

6,000 6,000 2,000 4,000 8,000 2,000 3,000 7,000 7,000 5,000 3,000 17,000 3,000 38,000 5,000
1,000

6,000 6,000

2,000

4,000

1,000

8,000

2,000
3,000

7,000 7,000

5,000

3,000

17,000

3,000

38,000

5,000

1,816

This time, we did not scan for secrets exposed in front-end
applications, as we have already covered that topic in our previous
report. Instead, we focused on secrets accessible through vulnerable
APIs identified by our DAST scans.

High impact secrets found

https://escape.tech/the-api-secret-sprawl-2024
https://escape.tech/the-api-secret-sprawl-2024

Critical Findings:
Exposed and Vulnerable
Development APIs

In our research, we uncovered a significant volume of exposed development APIs across
multiple domains. A total of 3,945 development APIs were identified as publicly accessible,
posing considerable security risks due to their lack of adequate protection —3,650 of these
exposed APIs were found among Fortune 1000 companies. Exposing development APIs, which
often bypass rigorous security controls in favor of testing and iteration, can unintentionally
reveal sensitive internal systems, configurations, and potential vulnerabilities, leaving
organizations open to exploit.

Among the exposed APIs, we identified at least 198 critical vulnerabilities, including various
CVEs and OWASP Top 10 risks, such as API2:2023: Broken Authentication and API8:2023:
Security Misconfiguration. These vulnerabilities include risks that could allow unauthorized
access to sensitive data, privilege escalation, and potential unauthorized control over critical
applications. The nature and distribution of these vulnerabilities indicate a systemic gap in
security practices across development environments, as many of these APIs lack proper
access control, authentication, and monitoring.

More than that, our analysis highlighted that six organizations were particularly impacted, each
with over 100 exposed development APIs within their domains. Of these:

Five organizations are listed within the Fortune 1000 companies, representing some of
the largest and most influential corporations globally.
One organization is part of the CAC40 index, underscoring that even prominent
European enterprises are not immune to these security oversights.

The exposure of development APIs at this scale poses a high risk to both data integrity and
operational security. Development environments often house experimental or untested code,
which may inadvertently expose sensitive configuration details, endpoints, and paths into
production systems. Given the volume and scale of the exposure, there is an elevated risk of
data breaches, intellectual property theft, and reputational damage, especially for those
organizations within the Fortune 1000 and CAC40.

3,945
exposed development APIs

198
highly critical vulnerabilities

https://github.com/OWASP/API-Security/blob/master/editions/2023/en/0xa2-broken-authentication.md
https://github.com/OWASP/API-Security/blob/master/editions/2023/en/0xa8-security-misconfiguration.md

Critical Findings:
Fortune 1000 at high risk

We uncovered a substantial number of
critical vulnerabilities within the
exposed APIs of 316 Fortune 1000
companies. In total, we identified 1,830
highly critical vulnerabilities affecting a
broad range of companies, including
those in highly regulated sectors like
financial services, healthcare, and
telecommunications. This level of
exposure poses significant risks,
potentially compromising sensitive data
and allowing unauthorized access to
critical systems.

We dug into the specifics and found
some troubling patterns. According to
the OWASP API Security Top 10 for
2023, vulnerabilities like Broken
Authentication (API2:2023) and
Security Misconfiguration (API8:2023)
were rampant, with 381 and 746
instances respectively.

1.8K
highly critical vulnerabilities found (very
large tech orgs. like Amazon, Google or

Meta etc. were excluded)

316
companies impacted, some in highly

regulated industries like financial
services

API8:2023
62.2%

API2:2023
31.8%

API7:2023
2.7%

API9:2023
2.5%

Alignment of high-risk Fortune 1000 vulnerabilities
with OWASP Top 10 2023 classification

Many of these APIs lacked even the most basic access controls, allowing for unauthorized data
access or manipulation. A staggering 19 NoSQL injection vulnerabilities and 11 SQL injection flaws
were scattered across APIs, with 10 instances of Broken Object Level Authorization (BOLA)—all
creating a perfect storm for potential exploitation.

It is clear that API security practices hadn’t kept up with the growing reliance on APIs across
industries, revealing a systemic gap in both development and deployment practices. To tackle this,
companies need to close the gap with immediate action: strengthen access controls, enforce secure
configurations, and regularly test APIs to catch issues before they become threats.

American multinational tech company:
Exposed Spring Boot Actuator
Spring Boot Actuator is a sub-project of Spring Boot that provides
production-ready features to help you monitor and manage your application.

By design, Actuator exposes diagnostic and monitoring data, such as environment variables,
configuration properties, and detailed mappings of application routes. However, if not
properly secured, these endpoints can inadvertently expose sensitive information about an
application’s internal state, providing attackers with critical insights that can be leveraged to
exploit vulnerabilities.

During a security assessment of one of the exposed API endpoints owned by a major
American technology company, we gained unrestricted access to several Spring Boot
Actuator endpoints, specifically:

https://[redactedcompanydomain.com]/admin/actuator/env
https://[redactedcompanydomain.com]/admin/actuator/mappings
https://[redactedcompanydomain.com]/admin/actuator/httptrace.

Each of these endpoints revealed sensitive details about the application’s environment,
structure, and operations, collectively presenting a substantial security risk.

The first significant finding was with the /env endpoint, which revealed critical environment
variables in plain text. Upon loading the endpoint’s response, it became clear that sensitive
information—such as database credentials, API keys, and service tokens—was accessible
without any obfuscation. Exposure of these variables presents a substantial risk, as they can
provide unauthorized actors with the means to gain elevated access, move laterally through
systems, and potentially launch further targeted attacks on backend services.

Further investigation led to the /mappings endpoint, which disclosed a comprehensive map
of the API’s routing structure. This included not only public endpoints but also private routes
intended for restricted internal use. By detailing the API’s route mappings and configuration,
the endpoint unintentionally provided a roadmap of the system’s structure, revealing
potential entry points and avenues for exploitation. In the hands of an attacker, this visibility
into the application’s internal architecture could simplify the task of identifying weak spots
and exploiting vulnerabilities in a targeted manner.

The third exposed endpoint, /httptrace, offered a detailed log of recent HTTP requests,
complete with request headers, response statuses, and metadata. This level of trace data,
including potential session cookies and internal IP addresses, can significantly aid an
attacker in reconstructing user behavior, mimicking legitimate requests, or even hijacking
active sessions. Such logs can facilitate a range of attacks, from session replay to broader
reconnaissance efforts, making the exposure of this endpoint particularly sensitive.
 as database credentials and API keys, to prevent accidental exposure.

American multinational tech company:
Exposed Spring Boot Actuator

These Actuator endpoints—/env, /mappings, and /httptrace—collectively provided a depth
of insight into the API’s environment and operations that, in the absence of access controls,
posed a considerable security risk. The availability of these diagnostics endpoints without
restriction would allow any external party to gain a detailed understanding of the
application’s configuration, user activity, and internal routes, effectively dismantling critical
layers of operational security.

Recommended Remediation Steps
Restrict Access to Actuator Endpoints:1.

Implement access control to ensure that sensitive Actuator endpoints, such as /env,
/mappings, and /httptrace, are accessible only to authorized users on the internal
network or authenticated users with administrative privileges.

Disable Sensitive Actuator Endpoints in Production:2.
Configure the Spring Boot Actuator settings to disable endpoints like /env, /mappings,
and /httptrace in the production environment, or at least restrict them to authorized,
internal users only.

Obfuscate Sensitive Data in /env:3.
In cases where /env must be used, consider redacting or obfuscating sensitive
environment variables, such as database credentials and API keys, to prevent
accidental exposure.

Monitor and Log Access Attempts to Actuator Endpoints:4.
Implement logging and monitoring of all access attempts to these endpoints, enabling
detection of any unauthorized access and facilitating incident response.

Overall, this assessment underscores how easily operational details can become visible
without proper restrictions, turning what might otherwise be routine endpoints into critical
vulnerabilities. Addressing these exposures is essential to uphold the security and integrity
of the company’s infrastructure.

Standout Scenarios:
High-Impact CVEs in the Wild

This section highlights critical cases where APIs, compromised by known CVEs (Common Vulnerabilities
and Exposures), are openly accessible on the internet. These vulnerabilities, if unaddressed, can serve
as entry points for malicious actors to exploit vulnerable API services.

Key findings:

713
Total High Impact CVEs Found

Top 5 CVE occurencies

0 20 40 60 80 100

CVE-2024-5535

CVE-2022-2274

CVE-2022-2068

CVE-2022-1292

CVE-2021-3711

95

70

70

57

57

98
Distinct High Impact CVEs

Types

102
High Impact CVEs in 2024, with

CVE-2024-5535 as a clear leader

Prevalence of OpenSSL Vulnerabilities: A lot of
found CVEs are associated with OpenSSL, a widely
used library for secure communications. APIs
leveraging OpenSSL must ensure they are using
updated versions to mitigate these vulnerabilities.
Risk of Remote Code Execution: Several
vulnerabilities, notably CVE-2022-2274 and CVE-
2021-3711, can lead to remote code execution if
exploited, posing severe risks to API integrity and
security.
Importance of Input Validation: Vulnerabilities like
CVE-2022-2068 and CVE-2022-1292 highlight the
critical need for proper input validation to prevent
command injection attacks.
Legacy Vulnerabilities: A significant number of older
CVEs, frequently appearing from 2020 through 2023,
continue to impact APIs. This trend suggests that
many organizations struggle to patch legacy
vulnerabilities. These unpatched older CVEs are often
well-documented, making them attractive targets for
attackers who can easily exploit known weaknesses.
Organizational Impact of Unaddressed CVEs: The
presence of these CVEs in production may affect
compliance with security standards and lead to
potential regulatory issues. Furthermore, should these
CVEs be exploited, the resultant damage could
impact not only security but also customer trust and
business continuity.

CVE-2021-3711 (57 instances)
As an older CVE, if it pertains to

cryptographic weaknesses or data
exposure, it would directly impact APIs by

potentially making data-in-transit
vulnerable

Standout Scenarios:
Mapping CVE to CWE
Diiscovered CVEs map to several key CWEs associated with common API weaknesses. Here
are the main categories of weaknesses found in the list and their implications for API security:

Improper Input Validation (CWE-20):
Relevance: Improper input validation is one of the most common vulnerabilities in API
systems, where unvalidated or poorly sanitized inputs can lead to injection attacks,
unauthorized access, or unintended behavior.
Implications: APIs with CWE-20 vulnerabilities are susceptible to attacks that bypass
intended restrictions, exploit business logic flaws, or cause unexpected outcomes.

Improper Neutralization of Special Elements used in an OS Command (Command Injection,
CWE-78):

Relevance: Command injection can lead to unauthorized command execution on the server,
enabling attackers to gain deeper access to systems.
Implications: CWE-78 vulnerabilities in APIs are especially dangerous as they can provide
attackers with access to server operations, potentially allowing unauthorized data access,
privilege escalation, or remote code execution.

Integer Overflow or Wraparound (CWE-190):
Relevance: Integer overflows occur when calculations exceed the allocated storage for
integers, leading to unexpected or unsafe values. In APIs, such vulnerabilities can be used
to bypass restrictions or overflow buffers.
Implications: Vulnerabilities in this category make APIs susceptible to buffer overflows or
logic manipulation, often leading to crashes or arbitrary code execution.

Cryptographic Issues (CWE-310):
Relevance: API communications rely heavily on encryption for data protection, especially
when handling sensitive information. Poorly implemented cryptographic measures expose
APIs to data interception or decryption attacks.
Implications: Weak cryptographic implementations in APIs can lead to data leakage, man-
in-the-middle (MitM) attacks, or unauthorized data access.

NULL Pointer Dereference (CWE-476):
Relevance: A null pointer dereference occurs when a program attempts to access or modify
data at a null (nonexistent) memory location. In APIs, these vulnerabilities often lead to
application crashes or denial of service.
Implications: API systems with CWE-476 vulnerabilities may be exploited to cause
application disruptions, affecting service availability and reliability.

Addressing these CWEs through consistent validation, secure cryptographic practices, and
boundary checks is essential to reduce attack surfaces in API environments.

Essential remediation steps
This extensive exposure of vulnerable APIs underscores a critical security issue.

If you have publicly accessible APIs or are uncertain about whether your developers
adhere to best practices to prevent unsecured staging or development APIs from being
exposed, we recommend taking the following actions immediately:

Conduct a Comprehensive API Audit: Review all public-facing APIs to identify any
endpoints that are exposed unintentionally. This includes testing for staging,
development, and unused APIs that may have been left accessible. Categorize APIs
based on sensitivity, usage, and the type of data they handle. This helps prioritize
which APIs require immediate attention and remediation.
Deactivate Unused or Duplicate APIs: Regularly review and disable APIs that are no
longer in use or required. This practice helps reduce the attack surface of your
application and minimizes potential security risks associated with outdated or
redundant APIs.
Recheck for Exposed API Secrets: Conduct a thorough check to ensure that API keys,
tokens, and other secrets are not exposed in public repositories, documentation, or
within API endpoints. Implement automated secret scanning tools to prevent such
exposures continuously.
Implement an API Governance Strategy: Establish a robust API governance strategy to
manage the growing number of APIs across your organization. This strategy should
include standardized processes for API development, documentation, versioning, and
security, ensuring consistency and reducing the risk of unsecured APIs.
Enforce Authentication and Authorization: Ensure all APIs are protected with strong
authentication and authorization mechanisms. Use industry-standard methods like
OAuth 2.0, JWT tokens, and role-based access controls to restrict access and prevent
unauthorized use.
Implement Automated API Discovery: Deploy automated API discovery tools to
continuously scan and catalog all APIs, including shadow, unused, and potentially
exposed APIs. This proactive approach ensures full visibility of your API environment.
Implement an Automated Security Solution that Can Start Scanning in Minutes:
Utilize a security solution that enables immediate scanning of your API ecosystem for
vulnerabilities and misconfigurations. A solution that provides quick setup and fast
scanning capabilities can help identify and mitigate risks efficiently without disrupting
workflows.
Educate Your Internal Teams: Ensure that all team members understand the
importance of token security and adhere to best practices. Consider enhancing the
security experience through gamification or implementing a Security Champion
Program, following The Security Champion Program Success Guide.

These measures are crucial for protecting your APIs and maintaining secure and compliant
applications. For more detailed information, you can use our API Security Checklist or refer
to the resources provided on the Escape blog.

https://securitychampionsuccessguide.org/
https://26857953.fs1.hubspotusercontent-eu1.net/hubfs/26857953/Escape%20API%20Security%20checklist.pdf?ref=escape.tech
https://escape.tech/blog/

ANY API

ARE THEY OPEN TO
THE INTERNET?

YES

Immediate steps to take

NO

IS IT BY DESIGN?
HARDEN YOUR

API ENVIRONMENT

We also prepared a handy diagram to help you understand your environment and
mitigate the risks with confidence:

AM I DELIBERATELY USING A
CRITICALLY VULNERABLE

VERSION?

AUTOMATE API CATALOG
(ENSURE ALL APIS AND THEIR
VERSIONS ARE DOCUMENTED)

DEACTIVATE UNUSED OR
DUPLICATE APIS

REGULARLY SCAN FOR
 API VULNERABILITIES

ENFORCE STRONG
AUTHENTICATION AND

AUTHORIZATION

SCAN FOR EXPOSED
API SECRETS

TAKE IMMEDIATE
ACTION

NOYES

NOYES

AM I ALLOWING TO ACCESS
API WITHOUT

AUTHENTICATION

PATCH IMMEDIATELY

YES NO

SCAN TO VERIFY THAT THERE
ARE NO API SECRETS

ACCESSIBLE

HARDEN YOUR SECURITY
POSTURE

Conclusion
Securing all your APIs is hard. It’s even harder when you don’t know what you have to
secure, want to ship (insecure) APIs too fast in the wild and have to monitor them at large
scale. Your organization is now not only prone to data breach risks but also to severe
financial implications.

Our study reveals that over 100,000 vulnerabilities are present across Fortune 1000 and
CAC 40 companies, with 1,800 classified as highly critical, directly impacting some of the
largest organizations globally.

One of the most striking findings was the extensive exposure of vulnerable development
APIs and the high level of overall vulnerability criticality. This highlights the real and present
dangers for each organization and the necessity of thoroughly testing applications both
before and after deployment.

Moreover, we identified that organizations continue to expose sensitive secrets, including
access tokens and API keys, within their API environments, amplifying security risks and
potential misuse.

Organizations must respond fast, adopting best practices for risk mitigation and integrating
continuous, automated testing of their applications.

Are you looking to automate discovery and security of your APIs at scale, improve your
organization's security posture and need to ensure compliance with standards like HIPAA,
GDPR, and PCI DSS?

Our team is here for you. We'll help identify your online exposures and provide strategic
advice on implementing effective security practices. Feel free to reach out!

https://calendly.com/d/3mv-h3g-fqb/escape-free-api-security-assessment
https://calendly.com/d/3mv-h3g-fqb/escape-free-api-security-assessment

escape.tech
ping@escape.tech
+1 (707) 615 6448

Automate the discovery of all APIs at scale

Automate API documentation generation

Ensure comprehensive security coverage with 130+ API security tests,
including OWASP Top 10, business logic, and access control

Automated security scanning by plugging Escape’s modern DAST into
your CI/CD systems

Gain instant access to the affected repository and developer-friendly
remediation code snippets

Learn more

Do you need help in assessing whether your APIs are exposed and at risk?
We’re here for you. With Escape you can:

https://escape.tech/
https://escape.tech/?utm_source=content&utm_medium=referral&utm_campaign=api-secrets

