
The State of
GraphQL Security
2023
What scanning 1500+ endpoints has told us about securing
GraphQL in production

escape.tech/

Executive
Summary

In Q1 2023, the Escape Research team found 46,809 security issues
among 1599 public GraphQL endpoints.

65% of endpoints were vulnerable to high or critical severity issues
according to the CVSS ranking system.

Of all the issues found, 38.8% were specific to GraphQL, showing how
this technology comes with its own security challenges.

Also, Sensitive data leaks represented 9.38% of the findings. In
particular, we found 296 remote access tokens of various kinds leaking
through unauthenticated GraphQL API calls.

Finally, 91% of the APIs tested were vulnerable to easily exploitable
Denial of Service issues.

This research over the last quarter shows that organizations are yet to
tackle the specificities of GraphQL correctly when it comes to
security, with the technology being especially prone to leaking sensitive
data and denial of service.

© 2023 Escape, inc.

https://escape.tech/

Key Take
Aways

Criticality. The number of high-risk GraphQL vulnerabilities remains
dramatically high, with 65% of endpoints vulnerable to high or critical
vulnerabilities. This highlights an endemic risk among GraphQL-
based production applications.

Best Practices. 47% of the findings could have been fixed by
implementing best practices, showing a need for essential knowledge
and proactive security around GraphQL.

GraphQL Specificity. 38.8% of the vulnerabilities found are specific
to the GraphQL language and its frameworks - showing that
organizations do not correctly manage the new risks associated with
the technology yet.

Attack Vectors. Information Disclosure, Lack of Resource Limiting,
Denial of Service, and Access Control Issues were the attack vectors
causing the most risks. HTTP misconfigurations were the most
common issues but not the most critical.

Exploitability. All of the vulnerabilities considered in this report
were found using unauthenticated requests on public, external
endpoints, highlighting the lack of proper authorization mechanisms
in numerous GraphQL APIs.

© 2023 Escape, inc.

https://escape.tech/

Background

GraphQL, a powerful and flexible query language for APIs, has seen rapid
adoption since its inception in 2015. Developed by Facebook and later
open-sourced, it has become the go-to choice for modern application
development, allowing clients to request exactly what they need from
backend services.

However, with its growing popularity, it has become increasingly
important for organizations to understand and address this technology’s
unique security challenges.

Purpose of the Report

By analyzing a large sample of public GraphQL endpoints, we have
identified the most pressing security issues faced by organizations
utilizing GraphQL for their APIs.

This report aims to provide an overview of the results, highlighting key
vulnerabilities, trends, and best practices. It has been written with CISOs,
CTOs, VP Engineering, and VP Product Security in mind to help them
address these security concerns effectively.

Introduction

© 2023 Escape, inc.

https://escape.tech/

Our research team enumerated 2,449 Public GraphQL APIs online.

We then used our own proprietary GraphQL Scanning technology to
audit those endpoints.

Escape can run more than 60 security tests in fully automated mode,
with 40 of them being specific to GraphQL. The complete list of security
tests can be found in our public documentation.

To avoid interfering with the applications we audited, all scans were run
in read-only mode, unauthenticated, and with conservative rate limits.

Consequently, most of the findings presented in this report are
exploitable remotely without any specific privileged authorization token.

Methodology

© 2023 Escape, inc.

https://docs.escape.tech/
https://escape.tech/

Overview of
Findings

Our of the 2,499 GraphQL endpoints found, we were able to audit 1588
of them that were fully public. It took us 416 hours of cumulative
computing time to complete this report's research.

When analyzing the breakdown of the frameworks powering public
GraphQL endpoints, we can observe that Apollo Server stands out as the
most used GraphQL engine by powering 61.53% of all public endpoints.

Total Security Issues Found

We highlighted a total of 43,784 security issues among all the scanned
applications. On average, each application contained 29 security issues.

© 2023 Escape, inc.

https://escape.tech/

Overview of
Findings

The histogram of the number of alerts per scan shows that most
applications are close to the average of 30 alerts. Very few applications
contained less than 10 alerts, while a few outsider applications contained
way more, up to 174 issues for a single application.

© 2023 Escape, inc.

https://escape.tech/

HTTP-level security misconfigurations are the most common issues
Information Disclosure issues are the second most common,
showing that GraphQL engines are prone to revealing too much
information to unauthenticated users.
Then come two categories linked to OWASP API4:2023 (Unrestricted
Ressource Consumption): complexity attacks, a GraphQL-specific
threat, and Denial of Services.
Access Control issues are significantly present among our results,
accounting for 10,8% of the total issues alone.
Introspection issues are GraphQL specific and related to API9:2023
(Improper Inventory Management)
Finally, we found 794 potential injections and requests forgeries,
about 2% of the total issues, which is still alarming considering the
possible consequences of those issues in modern APIs.

Breaking down the issues per category, we can quickly observe what the
common risks for GraphQL APIs are:

Overview of
Findings

© 2023 Escape, inc.

https://escape.tech/

Overview of
Findings

Taking a closer look at what matters, we observe that most of those
issues are of significant severity. 10.25% of all the issues have a severity
of High or above, and 53.30% have a Medium severity.

© 2023 Escape, inc.

https://escape.tech/

The issues that are specific to GraphQL
Denial of Services issues, and why they are overrepresented in
GraphQL APIs compared to their REST counterparts
Sensitive Data Leaks and Access Control issues

In this section, we analyse and discuss the key vulnerabilities discovered
in public GraphQL APIs by highlighting 3 categories of issues:

GraphQL-specific Issues

Contrarily to REST, GraphQL is a full-featured query language. From a
security standpoint, this leaves malicious actors a wide attack surface
and various ways to craft queries that abuse the application.

Moreover, parsing GraphQL is more complex than parsing formal API
requests.

In our research, 38.8% of the issues found were GraphQL-specific. This
prominent proportion highlights that, in practice, the specific risk
associated with GraphQL still needs to be better handled by engineering
and security teams, leaving GraphQL APIs more at stake than their REST
counterparts.

In-Depth Analysis of Key
Vulnerabilities

© 2023 Escape, inc.

https://escape.tech/

Complexity attacks, based on abusing the features of the GraphQL
language itself
Denial of Services by exploiting bugs in the GraphQL framework
Information Disclosure, when the GraphQL framework discloses
underlying APIs and sensitive information
Introspection, when the GraphQL Schema itself is vulnerable

When taking a closer look at the GraphQL-specific issues in our results,
we can see four majors types of GraphQL-specific attack vectors:

In-Depth Analysis of Key
Vulnerabilities

© 2023 Escape, inc.

https://escape.tech/

Denial of Services

Most GraphQL implementations are specifically vulnerable to Denial of
Service.

This weakness is due to the complexity of putting proper resource usage
limits in a full-featured query language. Unlike REST or SOAP, predicting
the computation power needed to satisfy a specific GraphQL request in
advance is hard. Thus, implementations tend to let clients consume
more resources than necessary.

Out of 1,588 endpoints in this study, 1,581 contained some form of
denial of service vulnerability. Only 7 GraphQL applications had proper
protection against DoS attacks.

In-Depth Analysis of Key
Vulnerabilities

More than 600 endpoints are vulnerable to recursive fragments DoS, and
more than 1300 to Directive Overloading. Those are two common
attacks abusing the GraphQL parser to create easy Denial of Services.

Also, our scanner generated almost 1500 requests that took more than 5
seconds for the endpoint to process, which we defined as a "Security
Timeout." While it is not a Denial of Service per se, it shows how
GraphQL is also vulnerable to DDoS without proper resource limitations.

© 2023 Escape, inc.

https://escape.tech/

Sensitive Data Leaks

Sensitive data leaks represented 9.38% of the findings. In particular, we
found 296 secret access tokens of various kinds leaking through
unauthenticated GraphQL API calls.

We found 90 Generic API Keys, 81 passwords, 66 AWS Tokens, and 61
JSON Web Tokens.

In-Depth Analysis of Key
Vulnerabilities

Those are secrets and should not be publicly accessible. Most of them
grant access to the internal system of companies, paving the way for
privilege escalation.

The amount of secrets leaked by our tested endpoint dataset is
concerning and highlights the lack of proper authorization mechanisms
in GraphQL.

© 2023 Escape, inc.

https://escape.tech/

 Implement robust authentication mechanisms to ensure only
authorized users can access the API. The present research has been
conducted using unauthenticated scanning only, yet we discovered
many security issues that could have been mitigated by requiring
proper authentication.
 Utilize role-based access control (RBAC) to restrict access to sensitive
data and operations based on user roles. In particular, isolation
between user accounts must be tested in GraphQL. The technology is
prone to creating breaks in tenant isolation.

 Implement GraphQL-aware rate limiting and throttling to protect
against Denial of Service attacks and other endpoint abuse. While
technically more complex to implement than in REST, specialized
packages like GraphQL Armor have appeared to solve that problem.
Consider using adaptive rate limiting based on user behavior and
legitimate request complexity.

In order to address the security vulnerabilities and risks outlined in this
report, organizations should implement a combination of proactive
security measures, best practices, and continuous security assessments.
The following recommendations aim to provide a foundation for
securing GraphQL APIs against the highlighted threats:

Avoid sensitive data leaks by implementing proper Authentication
and Authorization mechanisms

Mitigate the risk of Denial of Services by implementing GraphQL
Rate Limiting and Throttling

Prevention and
Mitigation

© 2023 Escape, inc.

https://escape.tech/

 Educate development and security teams on GraphQL-specific
security risks and best practices.
Encourage a culture of security-aware development and continuous
improvement.

 Limit the exposure of sensitive data by carefully designing the
GraphQL schema and restricting access to certain fields.
 Validate and sanitize all user inputs to prevent injection attacks and
other malicious actions.

 Regularly monitor and analyze GraphQL API logs to identify potential
security issues and respond to incidents quickly.
 Implement real-time alerting to notify security teams of potential
threats or suspicious activities.

 Conduct periodic security audits and vulnerability assessments to
proactively identify and address potential risks.
Use automated security testing tools, like Escape, to continuously
evaluate the security posture of your GraphQL APIs.

3. Train your team and raise awareness on GraphQL specificities

4. Ensure the security of the underlying API Schema

5. Monitor your GraphQL APIs

6. Perform Regular Security Audits and Assessments

Organizations can significantly reduce the likelihood of security incidents
involving their GraphQL APIs by adopting these prevention and
mitigation strategies. Treating security as an ongoing process and
continuously adapting to new threats and vulnerabilities as they emerge
is essential.

Prevention and
Mitigation

© 2023 Escape, inc.

https://escape.tech/

Conclusion

GraphQL's adoption is snowballing among organizations of all sizes,
especially in the enterprise. Yet, it comes with new types of cyber risks.

Security professionals and GraphQL developers are unaware of the
specific threats to GraphQL. Meanwhile, traditional security tools do not
have proper support for the technology yet.

Consequentially, the risk landscape for GraphQL is alarming.

We expect organizations that adopted GraphQL to evolve their security
practices and tooling to adapt to the specificities and unique challenges
of this technology in the near future.

About Escape

Escape is the GraphQL Security company. We are on a journey to help
organizations migrate to GraphQL securely by providing them with the
proper knowledge and tooling.

To learn more about Escape and GraphQL Security, visit our website:

Escape is a proud member of the GraphQL foundation board.

 https://escape.tech

Conclusion

© 2023 Escape, inc.

https://escape.tech/
https://escape.tech/
https://escape.tech/

escape.tech
ping@escape.tech
+1 (707) 615 6448

https://escape.tech/

