
The State of
GraphQL Security 2024
Insights from 13,000 GraphQL API issues:
A deep dive into the current state of GraphQL security

1/3
of API services have
highly-critical issues

13K
issues of varying severity

4.4K
secrets exposed in

public GraphQL APIs

x3
 more issues per API service

compared to last year due to the improved quality
of scanning and more in-depth coverage

Key Takeaways

Criticality: 33% of API services have highly critical GraphQL
vulnerabilities, and over 72% are vulnerable to medium-level issues. This
indicates potential widespread weaknesses in GraphQL security practices.

GraphQL-specificity remains a general concern: 13.4% of the vulnerabilities
found are specific to the GraphQL language and its frameworks - showing that
organizations do not correctly manage the new risks associated with the
technology yet.

Recent findings from Gartner underscore a significant trend: the
rapid adoption of GraphQL - by 2027, more than 60% of
enterprises will use GraphQL in production, up from less than 30%
in 2024. Against this backdrop, GraphQL security becomes
increasingly crucial. Our study focused on a sample of public
GraphQL APIs and revealed that these services still face
vulnerabilities, with thousands of issues identified. Thanks to
enhancements in our scanning tools, we now detect more issues
per API service than last year. The range and severity of these
vulnerabilities highlight the widespread challenge of securing
GraphQL APIs and underscore their critical importance.

Tristan Kalos, CEO of Escape

Call to action: 80% of issues could have been resolved by implementing
best practices such as access control with authorization and authentication,
input validation, and rate limiting to block brute-force attacks.

Main attack vectors:
Nearly 69% of the API services we scanned had issues related to
Unrestricted Resource Consumption, making them susceptible to Denial
of Service (DoS) attacks.
Approximately 11.1% of the services experienced issues associated with
Security Misconfiguration. Improper customization and configuration
options in GraphQL can create security gaps if not properly managed.

Exposed secrets: More than 4,000 exposed secrets have been uncovered in
GraphQL API responses, including access tokens, passwords, and credit card
numbers. Preventing public access to these details is crucial.

FINDINGS
08

GRAPHQL-SPECIFIC ISSUES
13

RECOMMENDATIONS FOR
GRAPHQL SECURITY

17

CONCLUSION
20

RISING ADOPTION OF GRAPHQL
05

INDUSTRY-WISE BREAKDOWN
14

ALIGNMENT WITH COMPLIANCE
FRAMEWORKS

15

SENSITIVE DATA EXPOSED
16

ANALYSIS OF KEY VULNERABILITIES
10

Contents

METHODOLOGY
07

GraphQL's flexibility and efficiency have
made it increasingly popular among
companies, with Gartner projecting its
enterprise usage to rise from 30% in
2024 to 60% by 2027​*. Furthermore,
Gartner predicts that, "By 2027, 30% of
enterprises utilizing GraphQL will
employ GraphQL federation, up from
less than 5% in 2024."

However, this growing reliance on
GraphQL underscores the need to
address its security risks. Protecting
GraphQL APIs is essential to protect
sensitive data and ensure application
integrity. Security vulnerabilities such
as unauthorized access, data exposure,
and denial-of-service attacks can lead
to data breaches and system
downtime.

Introduction

RISING ADOPTION OF GRAPHQL DEMANDS
INCREASED SECURITY ATTENTION

60%
of enterprises will use GraphQL in production by

2027, according to Gartner*

*according to Gartner® Report: When to Use GraphQL to Accelerate API Delivery

This report aims to provide insights into
the current state of GraphQL API security,
highlighting common vulnerabilities and
the potential risks they pose. By
understanding these security challenges,
organizations can proactively protect their
GraphQL APIs and prevent breaches.

This report also emphasizes the necessity
of securing GraphQL APIs before their
release in production. It has been written
with CISOs, CTOs, VP Application and
Product Security, and their security and
GraphQL development teams in mind to
help them address these security
concerns effectively.

30%
of enterprises utilizing GraphQL will employ
GraphQL federation within the next 3 years

https://www.apollographql.com/resources/gartner-when-to-use-graphql-to-accelerate-api-delivery

Varonis Threat Labs discovered two
significant vulnerabilities in Zendesk
Explore. The first was a SQL injection

vulnerability in a GraphQL API
endpoint, which could have allowed
attackers to access sensitive data

from any table in the Zendesk
account’s RDS. The second was an
access control flaw that permitted

unauthorized access to data without
proper credentials. These

vulnerabilities were reported to
Zendesk and were patched promptly.

Escape discovered a significant
vulnerability in Philips' GraphQL API,
where it was processing requests

over HTTP instead of the more secure
HTTPS. This misconfiguration

exposed sensitive data to potential
man-in-the-middle (MITM) attacks.

The issue was reported through
Philips' Coordinated Vulnerability

Disclosure system, and Philips
promptly addressed it, acknowledging

the Escape’s report in their Hall of
Honors.

EXAMPLES OF GRAPHQL VULNERABILITIES
FOUND IN ENTERPRISES

https://www.varonis.com/blog/zendesk-sql-injection-and-access-flaws
https://escape.tech/blog/escape-philips-hall-of-honors/
https://escape.tech/blog/escape-philips-hall-of-honors/
https://escape.tech/blog/escape-philips-hall-of-honors/

Our research team enumerated 160 full public GraphQL services online.

These services amounted to a total of 3,835 GraphQL operations.

This year, we've decided to limit our scope of research to improve the quality of the
results. To discover and analyze these APIs, we used Escape's proprietary
inventory and scanning tools, ensuring that our findings are of the utmost quality.

Escape's tool can automatically perform 116 security tests, covering many potential
vulnerabilities, with 100 of them supported for GraphQL. These tests are designed
to identify weaknesses that attackers could exploit, and the full list is available in
our public documentation.

To avoid interfering with the applications we audited, all scans were run in read-
only mode, unauthenticated, and with conservative rate limits.

Consequently, most of the findings presented in this report are exploitable remotely
without any specific privileged authorization token.

Services: The server running GraphQL, typically accessible via a base URL, e.g.,
https://api.myorg.com/graphql.

Operations: Specific GraphQL operations, such as queries or mutations, e.g.,
getUsers or createUser.

Key definitions

Methodology

The following key definitions are essential for understanding the context and
findings in this report:

Data Gat160
scanned public

GraphQL services
Total scanning time

 98 hours

https://docs.escape.tech/testing/vulnerabilities/

Findings

13,720
Total issues found

4,527
Highly critical

87
x3

 more issues per API service
compared to last year due to the improved

quality of scanning and more in-depth coverage

average issue per GraphQL service

API Services

N
um

be
r o

f I
ss

ue
s

The histogram of the number of issues per API service shows that most services
average around 87 issues. Very few services had fewer than 10 issues, while a few
outliers had significantly more, with one service reaching up to 1,021 issues.

average

Severity of the Issues

We categorized the issues found using CVSS v3.1 ratings and discovered that
almost 99% of scanned API services had one or more issues of varying severity.

High Severity: Over 33% had at least one high-severity issue, posing significant
security risks if not promptly addressed.

Medium Severity: Over 72% had medium-severity issues, which still require
timely remediation.

Low Severity: Around 78% had low-severity issues, which were less critical but
still needed attention.

It’s important to tackle all severity levels when securing GraphQL. High and medium
issues are crucial and should be prioritized by development teams. However, each
vulnerability, no matter how small, plays a role in maintaining overall security.

33%
with High severity

72%
with Medium severity

https://nvd.nist.gov/vuln-metrics/cvss

The chart illustrates the distribution of compliance issues related to the OWASP API Top
10 for 2023.

Unrestricted Resource Consumption API4:2023 (68.3%): The majority of issues are
linked to this category, suggesting that many APIs lack proper rate limiting and
resource allocation mechanisms, making them prone to Denial of Service (DoS)
attacks. GraphQL’s ability to craft complex queries exacerbates this risk, as attackers
can exploit this flexibility to overwhelm the server.

Security Misconfiguration API8:2023 (11.1%): These issues stem from complex,
often improperly set configurations, leading to various vulnerabilities. The extensive
customization and configuration options of GraphQL can lead to security gaps if not
properly managed, increasing the likelihood of misconfigurations.

Broken Function Level Authorization API5:2023 (6.8%): Flaws in complex access
control policies allow unauthorized access to resources or administrative functions.
GraphQL's dynamic query capabilities make it challenging to implement consistent
authorization checks across all endpoints, increasing the risk of such vulnerabilities.

Analysis of Key Vulnerabilities

Unre
str

ict
ed

 Res
ou

rce
 Con

su
mptio

n

Sec
uri

ty
Misc

on
fig

ura
tio

n

Brok
en

 Fu
nc

tio
n L

ev
el

Auth
ori

za
tio

n

Serv
er

Side R
eq

ue
st

Fo
rgery

Uns
afe

 Con
su

mptio
n o

f A
PIs

Im
prop

er
Inv

en
tor

y M
an

ag
em

en
t

Brok
en

 Auth
en

tic
ati

on

Brok
en

 O
bjec

t P
rop

ert
y L

ev
el

Auth
ori

za
tio

n

Brok
en

 O
bjec

t L
ev

el
Auth

ori
za

tio
n

Unre
str

ict
ed

 Acc
es

s t
o S

en
sit

ive
 Bus

ine
ss

 Fl
ow

s
0

2000

4000

6000

8000

10000

Breaking down the issues per category, we can quickly observe what the common
risks for GraphQL APIs are:

Unrestricted Resource
Consumption

Unrestricted resource consumption accounts for over 68% of the total issues
found. The graph illustrates the various subcategories of issues causing
unrestricted resource consumption in GraphQL APIs.

Timeout issues, representing 77.5% of resource limitation problems, occur when
requests take too long to process, leading to potential DoS attacks. Implementing a
server timeout, such as a 5-second limit, can mitigate this issue. For detailed
guidance on configuring timeouts and managing query complexity in GraphQL, refer
to this article.

Depth limit and field limit contribute to a combined 21% of the causes. These issues
are GraphQL-specific due to its design and querying capabilities.

Directive overload accounts for around 1% of the causes. This occurs when a user
sends a query with many consecutive directives, overloading the engine handling
those directives.

No Timeout Protection
77.5%

Depth Limit
15.4%

Field Limit
6.1%

Directive Overload
1%

Unrestricted Resource Consumption Breakdown

https://docs.escape.tech/testing/vulnerabilities/resource_limitation/timeout

Schema Availability

We found that 6.3% of schemas were leaking, i.e. exposing or making accessible
the detailed structure and organization of the GraphQL API's data model, including
field names, types, and possibly even underlying database structures. Attackers
can use the exposed schema to better understand potential vulnerabilities or weak
points in the API's design, facilitating more effective exploitation attempts.

45% of schemas were closed with no suggestions, effectively hiding schema
details. While closing schemas isn't inherently bad, relying on security by obscurity
is ineffective. APIs should be developed assuming schemas are always visible.

6.3%
Leaking Schema

45%
 Closed Schema

GraphQL-specific Issues

Unlike REST, GraphQL is a full-featured query language, offering a wide attack
surface for malicious actors to craft abusive queries. The complexity of parsing
GraphQL adds to the security challenges. Our research found that 13.4% of the
issues were specific to GraphQL, highlighting that the unique risks associated with
GraphQL are not yet well-handled by engineering and security teams, making
GraphQL APIs more vulnerable than their REST counterparts.

GraphQL-Specific Risks:

Resource Limitations: The most common risk, caused by the absence of limits
on breadth, depth, fields, aliases, or batch queries, and circular introspection,
leading to DoS attacks.

Schema Issues: Challenges such as positive integer validation errors, duplicated
objects, typing misconfigurations, and zombie objects. For instance, zombie
objects can reveal legacy or unused parts of the codebase, posing a severe
security risk as they are often unmaintained and unpatched.

Information Disclosure: These issues primarily arise when introspection is
disabled. Tools like Clairvoyance can infer the entire schema through “Field
Suggestions” when a query contains typos.

Configuration Issues: Potential vulnerabilities from GraphQL IDEs, absence of
Automatic Persisted Queries causing backend performance issues, and large
query strings leading to increased latency and degraded client performance.

Addressing these risks is crucial for improving the security of GraphQL APIs and
ensuring they are as robust as their REST counterparts.

Resource Limitation
57.7%

Schema
36.2%

Information Disclosure
3.7%

Configuration
2.5%

13.4%
GraphQL specific issues

Breakdown of GraphQL specific issues

https://github.com/nikitastupin/clairvoyance

Industry-wise Breakdown

123
Financial Services

Top 2 industries with the highest number of issues per API service

64
Technology & IT

By mapping chosen GraphQL services to their respective industries, we’ve tried to
identify patterns in how GraphQL is used across different industries and understand
the particular vulnerabilities that may arise.

Our findings highlight that two industries are more prone to GraphQL security risks
than others - Financial services and Technology & IT.

Banks and financial institutions are
increasingly looking to deploy APIs for all
areas. According to the 2023 McKinsey
survey on APIs in banking, “Large banks are
launching API programs and allocating about
14 % of their IT budget to APIs on average.”
This trend highlights the critical role APIs
play in enhancing the agility, efficiency, and
innovation capabilities of financial
institutions.

However, despite this rapid growth, financial
institutions continue to face multiple
GraphQL API security risks. Discussions
around the need for stronger API governance
and security controls are frequent, yet
concrete actions are often delayed until an
emergency arises. This reactive approach is
problematic, as it leaves institutions
vulnerable to potential breaches and attacks.

When we discussed this issue with an API
security professional in the banking sector,
she noted, "many organizations still don’t
have a clear view of their inventory”.

“Some of the main challenges are that
security takes time and money, so it

doesn't get the attention it needs until an
emergency occurs. Some firms are more
proactive, but overall more need to be
proactive to really change the game.

Stronger and more consistent security
controls will make a difference when

applied.”

- Jack Hart,
API Security | VP, Information Security

Architect at City National Bank

This gap in visibility and proactive
security measures can lead to
significant vulnerabilities, exposing
sensitive financial data. Therefore, it is
crucial for financial institutions to
prioritize the implementation of strong
security practices for modern
development frameworks like
GraphQL and to adopt proactive
governance measures.

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/apis-in-banking-from-tech-essential-to-business-priority
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/apis-in-banking-from-tech-essential-to-business-priority
https://www.linkedin.com/in/jack-hart/overlay/about-this-profile/

Alignment with Compliance
Frameworks
Compliance with security standards and regulations is crucial for organizations
leveraging GraphQL APIs. Adhering to these standards helps protect sensitive data
and ensures organizations meet legal and regulatory requirements, avoiding severe
penalties and reputational damage.

Almost all the APIs we tested were non-compliant with at least one type of
compliance standards:

NIS2 (Network and Information Systems Directive 2)
GDPR (General Data Protection Regulation)
PCI DSS (Payment Card Industry Data Security Standard)
PSD2 (Payment Services Directive 2)
ISO 27001 (International Organization for Standardization 27001)
NIST (National Institute of Standards and Technology)
SOC 2 (System and Organization Controls 2)
FedRAMP (Federal Risk and Authorization Management Program)
HIPAA (Health Insurance Portability and Accountability Act)

Focus on PCI DSS

6.5.10
59.8%

6.5.5
10.3%

4.1
8.4%

6.5.1
7.9%

1.2.3
5.3%

2.2.5
4.7%

6.5.9
0.8%

The chart shows the distribution of PCI DSS compliance issues, with 59.8% linked to
Requirement 6.5.10 - Broken authentication and session management.
This statistic underscores vulnerabilities from insecure coding practices such as
weak password policies, inadequate session management, and insufficient use of
multi-factor authentication.

https://listings.pcisecuritystandards.org/documents/PCIDSS_QRGv3_1.pdf#page=17

Our analysis uncovered more than 4k exposed secrets through GraphQL API
responses, including access tokens, passwords, and credit card numbers. These
should never be publicly accessible, as they grant entry to internal company
systems, paving the way for privilege escalation and unauthorized access.

We also discovered significant amounts of Personally Identifiable Information (PII)
such as emails, phone numbers, and bank account numbers. The exposure of this
data can lead to severe consequences including phishing attacks, identity theft,
and financial scams.

The volume of secrets leaked by our tested endpoints highlights a concerning lack
of proper authorization mechanisms in GraphQL.

We’ve already highlighted the urgent need to address secret spawl in our “How we
discovered over 18,000 API secret tokens” report.

To address these security vulnerabilities and risks, organizations should implement
proactive security measures, adhere to best practices, and conduct continuous
security assessments.

You can follow our in-depth recommendations to mitigate these issues.

Sensitive Data Exposed

4,428
Secrets Exposed

2
Credit Cards

1,396
Access Tokens

49
Passwords

https://escape.tech/the-api-secret-sprawl-2024
https://escape.tech/the-api-secret-sprawl-2024
https://escape.tech/the-api-secret-sprawl-2024
https://escape.tech/the-api-secret-sprawl-2024
https://escape.tech/blog/how-to-secure-api-secret-keys/

GRAPHQL-SPECIFIC VULNERABILITIES
API Bruteforcing

Denial of Service

API Schema Leak

While batching and aliasing offer
convenience by allowing multiple
queries in a single HTTP request, they
can be exploited to bypass rate limits
and even cause servers to crash
through the creation of GraphQL bombs.

Fragments, which function similarly to
functions in GraphQL, can create
infinite recursion loops if not properly
handled, leading to server crashes and
can be exploited.

Endpoints with disabled introspection
can still leak the underlying API schema
through field suggestions. Using the OS
tool Clairvoyance, anybody can rebuild
the full schema.

GRAPHQL SECURITY
RECOMMENDATIONS FOR

To help you understand, prevent, and address your GraphQL vulnerabilities,
we've compiled the infographic below.

LEARNING RESOURCESUSEFUL OPEN SOURCE TOOLS

API Security Academy
Hands-on, interactive lessons that teach various vulnerabilities and
best practices in GraphQL security

API Security Academy
Hands-on, interactive lessons that teach various vulnerabilities and
best practices in GraphQL security

GraphQL Security Academy
Hands-on, interactive and open-source
lessons that teach various vulnerabilities
and best practices in GraphQL security

GraphQL Armor
The missing GraphQL security security layer for Apollo GraphQL
and Yoga / Envelop servers

GraphQL Protect
A dead-simple yet highly customizable security sidecar
compatible with any HTTP GraphQL Server or Gateway

De
fe

ns
e

O
ffe

ns
e

An intentionally vulnerable implementation of
Facebook's GraphQL technology to learn and
practice GraphQL Security.

Damn Vulnerable GraphQL App

Learn about GraphQL security, performance,
testing and building production-ready APIs with
lots of hands-on walkthroughs

Escape Security blog

Introduction to Basic Concepts, Security
Considerations & Reconnaissance,
Vulnerabilities and Attacks, Offensive Tools

Acceis GraphQL for pentesters

GraphQL Shield
 A GraphQL tool to ease the creation of permission layer.

CrackQL
GraphQL password brute-force and fuzzing utility.

Goctopus
Blazing fast GraphQL discovery & fingerprinting toolbox.

BatchQL
GraphQL security auditing script with a focus on performing
batch GraphQL queries and mutations.

GraphQL Wordlist
Operations, field names, type names...

An excellent talk about GraphQL vulnerabilities

GraphQL Security Vulnerabilities
in the Wild

BEST PRACTICES FOR GRAPHQL SECURITY

1

2

3

4

5

6

Without the appropriate authorization-check layer, private data and
high-access features may be exposed to unauthorized users. Ensure
enforcement of authorization and authentication rules through a cleaner
approach using resolver middleware.

Limit Access control with Authorization and Authentication

The best way to protect your API from injections is to use input
validation for all incoming requests, write custom validators for domain-
specific and more complex validations.

Input Validation

Use the graphql-limit-plugin to set limits on your queries and mutations.
Set a longer time window between queries/mutations for highly
vulnerable actions (like sign-ins) and a shorter one for less vulnerable
actions. This approach limits attackers without affecting legitimate users.

Rate Limiting to Block Brute Force Attacks

You can use the graphql-armor package to easily limit the depth of
queries. First, check how deep you expect queries to be, and then set
a maximum depth accordingly.

Depth Limiting

Limit the exposed schema to only include necessary types and fields,
reducing the attack surface. You can use persistgraphql by Apollo to
auto-generate a list of approved queries at build time.

Schema Whitelisting

You can use the graphql-armor package to easily limit the cost of
queries. First, make an estimate of your resolvers’ cost for your database
and third-party services, then implement a hard limit on each query.

Limit the Cost of GraphQL Queries

https://escape.tech/academy/
https://escape.tech/academy/
https://github.com/Escape-Technologies/graphql-armor
https://github.com/ldebruijn/graphql-protect
https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application
https://escape.tech/blog/tag/graphql/
https://escape.tech/blog/tag/graphql/
https://github.com/dimatill/graphql-shield
https://github.com/nicholasaleks/CrackQL
https://github.com/Escape-Technologies/goctopus
https://github.com/assetnote/batchql
https://github.com/Escape-Technologies/graphql-wordlist
https://www.youtube.com/watch?v=hyB2UKsEkqA
https://github.com/apollographql/persistgraphql

Take back control of the API attack surface. Build an API inventory.

You should be able to answer the following questions:
How many APIs does my company expose externally?
Which of them are critical to the business?
Which of them manipulates sensitive data?
Do we have any development endpoints exposed on the internet? Do we have
any unnecessarily exposed endpoints?

Do some GraphQL API threat modeling. “If I was an attacker, how could I use
GraphQL APIs to threaten the business?”

Talk with the developers. Understand how they build their APIs. Work closely with
them to ensure they understand the security implications of the features they
implement. Promote a security-focused culture that prioritizes API security from
the design phase through to deployment. Give examples.

Implement best practices throughout the API lifecycle:
Implement an API Gateway
Implement secret scanning, especially on front-end repositories
Test every API release for OWASP API Top 10 and business logic flaws. If
possible, do it as early as in the CI/CD

This webinar provides an in-depth exploration of risk management for your GraphQL
APIs.

Best practices per role
For security engineers

https://escape.tech/blog/api-gateway-security/
https://escape.tech/blog/owasp-api-security-checklist-for-2023/
https://escape.tech/blog/what-is-business-logic-and-why-its-important/
https://www.youtube.com/watch?v=tJX_gMitFps

1. Limit Access control with Authorization and Authentication

Without the appropriate authorization-check layer, private data and high-access
features may be exposed to unauthorized users. Ensure enforcement of authorization
and authentication rules through a cleaner approach using resolver middleware.

2. Input validation

The best way to protect your API from injections is to use input validation for all
incoming requests, write custom validators for domain-specific and more complex
validations. graphql-scalars can help

3. Rate limiting to block brute force attacks

Use the graphql-limit-plugin to specify this limit on your queries and mutations. The
best way to set it up is to set a large time window between queries/mutations when
they are highly vulnerable (like a sign in) and a shorter one for less vulnerable
queries/mutations. That way you only limit attackers and not your users.

4. Depth Limiting

You can use the graphql-armor package to easily limit the depth of queries. First,
check how deep you expect queries to be, and then set a maximum depth
accordingly.

5. Schema Whitelisting

Limit the exposed schema to only include necessary types and fields, reducing the
attack surface. You can use persistgraphql by Apollo or graphql-codegen from The
Guild to auto-generate a list of approved queries at build time.

6. Limit the Cost of GraphQL Queries

You can use the graphql-armor package to easily limit the cost of queries. First, make
an estimate of your resolvers’ cost for your database and third-party services, then
implement a hard limit on each query.

This webinar provides an in-depth exploration of risk management for your GraphQL.

For developers

Best practices per role

https://the-guild.dev/graphql/scalars/docs?ref=escape.tech
https://github.com/ravangen/graphql-rate-limit?ref=escape.tech
https://escape.tech/blog/graphql-query-cost-analysis/
https://github.com/Escape-Technologies/graphql-armor
https://github.com/apollographql/persistgraphql?ref=escape.tech
https://the-guild.dev/graphql/codegen/plugins/presets/preset-client?ref=escape.tech
https://github.com/Escape-Technologies/graphql-armor?ref=escape.tech
https://www.youtube.com/watch?v=tJX_gMitFps

The analysis of GraphQL APIs reveals significant adoption alongside considerable
security challenges, with unrestricted resource consumption and security
misconfigurations being prominent issues.

It shows that securing GraphQL APIs requires a detailed understanding of their
unique features and potential vulnerabilities. Meanwhile, traditional security tools
do not have proper support for the technology yet.

As GraphQL APIs continue to evolve, so too should the strategies used to secure
them, ensuring safe and reliable operations.

Organizations can protect their APIs and stay compliant by maintaining a
comprehensive API inventory, conducting regular security audits, implementing
resolver middleware for authorization and authentication, and using tools to limit
query complexity.

But remember, things can get really complex really fast—that's why companies love
automated solutions like Escape that evolve with them.

Conclusion

Automate the discovery of all APIs

Build an accurate API inventory in 15 minutes

Ensure comprehensive security coverage with 116 API security tests,
including OWASP Top 10, business logic, and access control

Shift security left with automated DAST scanning by plugging
Escape into your CI/CD systems

Gain instant access to the affected repository and developer-
friendly remediation code snippets

Learn more

Do you need help in assessing whether your GraphQL APIs are at risk?
We’re here for you. With Escape you can:

https://escape.tech/?utm_source=graphql-report-2024&utm_medium=organic

